

Advances in Heating & Cooling Technologies

Ruben Willmarth Comm. Regional Mgr

Ductless HVAC

Mini-SplitsVRF Systems

What is a Mini-Split?

Indoor Fan Coil

Wall-mounted Indoor Unit

What is a Mini-Split?

Outdoor "Condenser" Unit

Connected with Refrigerant Tubing

Worldwide Usage-Ductless Technology

Source: BSRA report 2005-2007

Split-zoning Advantages

- Easy Retrofit
- No Duct Losses
- Inverter-Driven
 Variable Speed
 Compressor
- Enormous Potential Savings with Zoning

Conventional ON/OFF control

Compressor starts at minimum frequency

- Quiet start
- No light flicker
- No locked rotor amps for very low in-rush
- Very low starting amperage
- No stress on windings or compressor frame
- Bearing lubrication increased during ramp-up
- Reduces noise and stress on piping with gradual start
- Greatly improved heating capacity

DC Compressor

DC rotary compressor motor equipped with powerful magnets assists compressor rotation

11

Without PAM control

With PAM control

PAM (Pulse Amplitude Modulation) adjusts the form of the output current wave so that it becomes close to that of the supply voltage wave.

98% of input power supply is effectively utilized.

DC Compressor

Split-ductless Advantages

- Unmatched zone comfort
- Extremely quiet
- Flexible solutions
- Efficient zoning
- Easy to install

A Heat Pump Like no Other

Hyper-Heating INVERTER

Tremendous year-round comfort!

Hyper-heating INVERTER vs. Other Units % Heating Capacity vs. Outdoor Temperature

A Heat Pump Like No Other

Lake Mills (Milwaukee), WI [Design 0° F] PK in

Church

A Heat Pump Like No Other

Yes, it is $+2^{\circ}$ F Outside of the church

A Heat Pump Like No Other

Inside it is +70° F AND the Discharge temperature is +123° F

*Many thanks to Ductesters for the use of these graphics

Benefits of Ductless Application

Benefits of Ductless Application

True Zoning Benefits

Residential Solutions

Commercial Solutions

20

True Zoning Benefits

Variable Refrigerant Flow Zoning Systems

VRF was introduced to the Japanese market in the early 1980s to provide a more efficient solution for heating and cooling buildings.

History of VRF

Office Application-Standard Process

Fresno IRS Building

What is VRF Technology?

There are 3 ways to Move Thermal Energy

•Air (low density, compressible)

•Water (high density, non-compressible)

•Refrigerant (*phase change*, compressible)

Moving Thermal energy comparison

VRF Heat Pump Technology

VRF Heat Recovery Technology

Simultaneous cooling and heating

Heating & Cooling with Traditional Systems

Heating & Cooling With VRF Heat Recovery

Why is VRF More Efficient?

Sample Building in Part Load: OA Temp 50°F

Increased Efficiency Opportunity

Why is VRF More Efficient?

Cooling Power Input PURY-P72

Why is VRF More Efficient?

School Energy Modeling Results

Office Building Energy Modeling Results

Italian Bank Study

- Side-by-Side comparison of 14 branch retrofit
 - 7 Buildings with VRF
 - 7 with 4-pipe system (boiler, chiller)
- Equipment cost was higher for VRF
- Installed cost was less for VRF
 - 2 Copper pipes cost more, labor was
 - 4 ABS pipes cost less, labor higher

Italian Bank Study

Maintenance cost 40% lower for VRF

Operating cost lower for VRF Energy cost was 28% to 48% less Average was 35% less

Traditional HVAC Solutions 40-60%

of a building's energy usage is from its HVAC system.

http://www1 eere energy gov/buildings/commercial/byac html

Sacramento Drill Tower

- Retrofit of Sac City offices inside 1st floor of water tower
- Old system was 30 Ton air-cooled chiller & natural draft boiler
- Replaced with 2x16 ton Heat Recovery VRF systems & all ducted fan coils
- ERV for ventilation air

Total Building Energy cost savings in 2009 vs. 2007= 27%

Thank You

COOLING & HEATING

