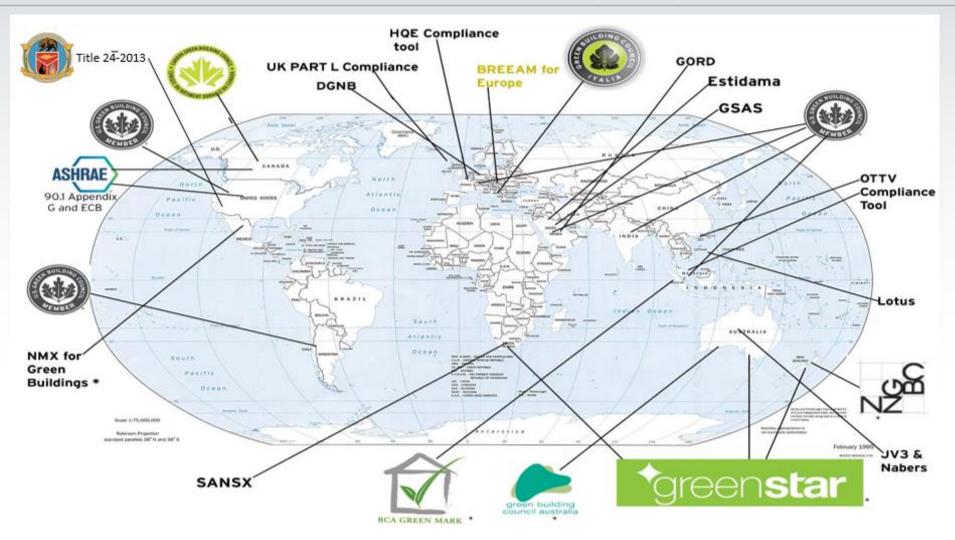
IES VE with CBECC-Com and Whole-Building Energy Modeling

IES

Liam Buckley ASHRAE Member, M.Eng., C.Eng. MIEI, BEMP Liam.Buckley@iesve.com

Agenda IES VE with CBECC-Com and Whole-Building Energy Modeling

- 1. Introduction to IES and our Technology
- 2. IES VE with CBECC-Com
- 3. How do I model for Compliance <u>and</u> Design
- 4. Case Studies
- 5. Q&A

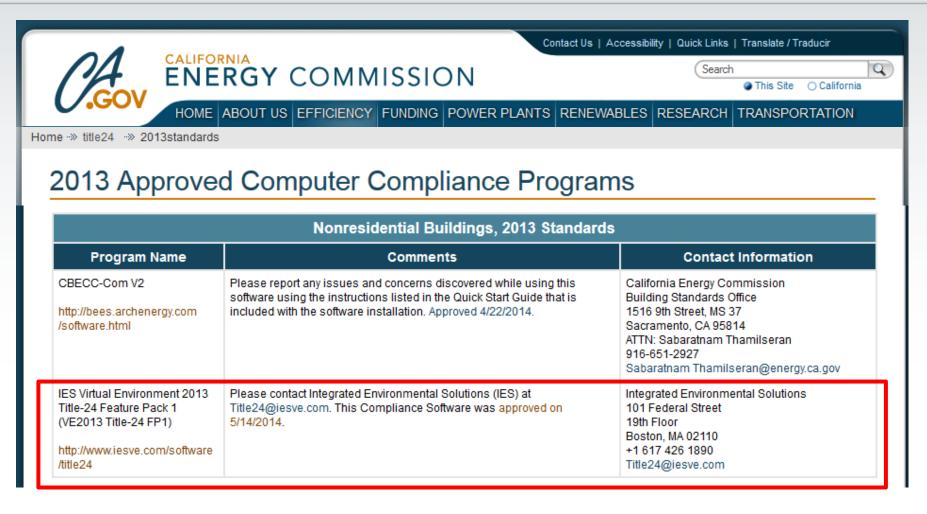

IES Ltd. – What we do

IES VE with CBECC-Com and Whole-Building Energy Modeling

- 1. Software
 - Compliance
 - **Building Performance Analysis**
- 2. Training
 - **Compliance (Utilities: 1 Day)**
 - **Building Performance Analysis (2-3 Days)**
- 3. (Sub)Consulting
 - **Building Performance Analysis**
 - Compliance
- 4. Research & Development
 - Masterplanning, existing buildings
 - www.iesve.com

IES Ltd. – What we do

IES VE with CBECC-Com and Whole-Building Energy Modeling



* these systems are currently in discussion and awating approval

CEC - 2013 Approved Software

IES VE with CBECC-Com and Whole-Building Energy Modeling

Reference: CEC at: www.energy.ca.gov/title24/2013standards/2013 computer prog list.html

Why use the IESVE software?

IES VE with CBECC-Com and Whole-Building Energy Modeling

- 1. Title 24 Compliance
- 2. Design & Optimization
- 3. HVAC Sizing
- 4. (Day)lighting Design
- 5. LEED Energy Modeling
- 6. AIA 2030, NZEB, ASHRAE

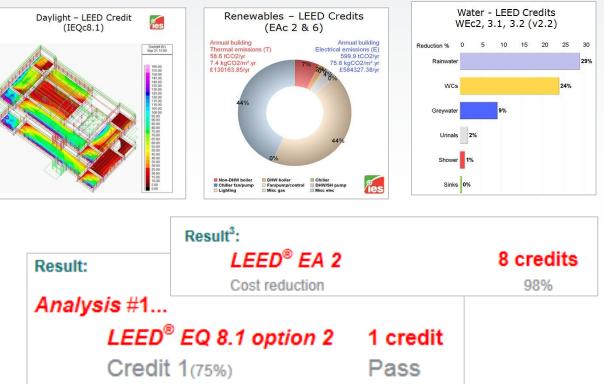
- 7. Occupancy Comfort (Thermal & Visual)
- 8. Save time/effort supporting multiple models

(1) IES VE Navigators – E.g. Parametric Analysis IES VE with CBECC-Com and Whole-Building Energy Modeling

				ametric Batch Processor							
Applications	Navigators										
Parametric Batch Processor	- 🔼 🖶 🖪	• • •	12 Selec	model and variable option	s for parametric simulation:						
When to use			Sta	us Simulation file	Variable	Focus	Iteratio step		Range max	Options	Summary
The tool allows multiple variants of	of a model or independen	+		ibpsa1.apr	External wall	✓ Model	-	1 1		3 Select	Ready [3 simulations]
models to be created automatical single changing variable in a bat be used as simple batch queue fo	ly and simulated with a ch queue. The tool can al:			ibpsa2.apr	Edemal window	 Model External window 	v	1 1	8	8 Select	Ready [8 simulations]
① Model geometry					Please select the	External window i	tem(s) to	be used:			
① Model data											
Apache simulation settings						Description			U- (P	-value ı/h·ft².°F)	
 Edit settings for each model 		? 🗋 🛛		Add simulation Remo	Viracon VUE1-50	(U=0.26) [SHGC=	=0.381 {\/	LT=48%}		0.25	Simulate
 Add to queue (APR file) 		? 🗋 🖡				(U=0.27) [SHGC=			-	0.26	
 Repeat for each model 					Viracon VRE1-59	(U=0.27) [SHGC=	=0.33] {V	LT=53%}	•	0.26	
· · · · · · · · · · · · · · · · · · ·						(U=0.26) [SHGC			•	0.25	
 Select destination model for results 		?				(U=0.26) [SHGC	-		•	0.25	-
Set model areas of interest (scale)		?	V			(U=0.29) [SHGC=((U=0.29) [SHGC=(•		• •	0.28	-
Parametric Batch Processor setting						(U=0.26) [SHGC=	-		• •	0.25	-
Select APR file for batch item (rov	•		V								
 Select variable to change (or none 	2)		V								
 Select scale of application 			250 240		Add item	Delete item					
Set iteration step			220-					ОК		Cancel	
Set range min/max			200-							Cancer	J
Options			190 180 170								
Check summary			√ 170 - 160 - 150 - √ 140 -								
 Repeat for each batch item (row) Simulate 			140								
= Simulate		2 🗆 🛛	110-								
⊖ Output			90 - 80 -								
View results		? 🗋 🛛	V 60 -								
			40	Jon Peb	Mor Apr Moy	J.	ju	Aug Si	ap (Oct N	by Dec

Total energy: (p_model.aps)

Total energy: (p_bpsa.aps)

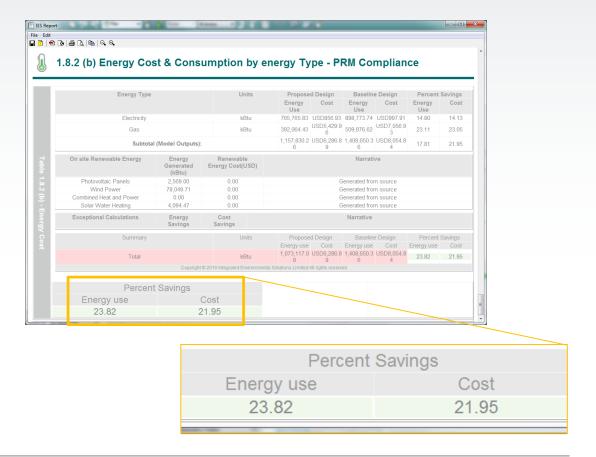

Total energy: (b[270]_ibpsa.aps) Total energy: (proposed model 13.aps) Total energy: (p_model 2.aps)

(1) IES VE Navigators – E.g. LEED[®] Navigator IES VE with CBECC-Com and Whole-Building Energy Modeling

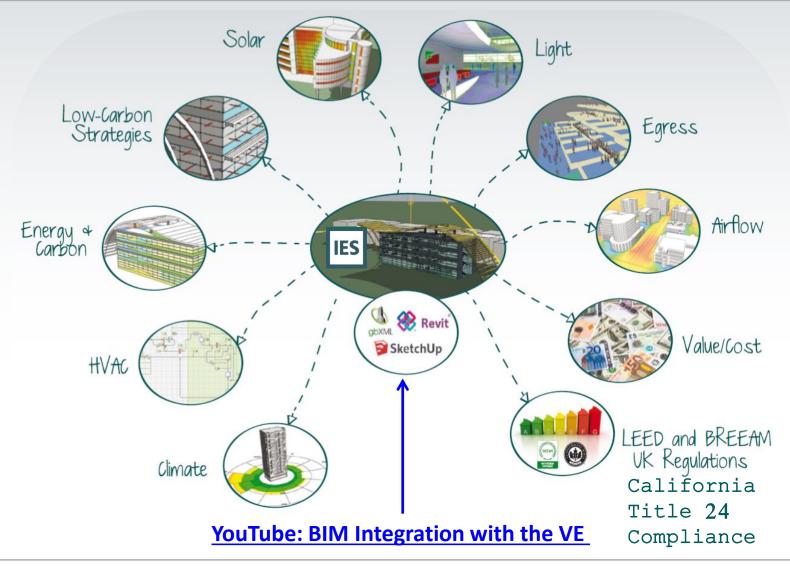
File File Many Tests Associate Contract	
File Edit View Tools Apache Settings	Help
3 2 2 3 3 2 3 6 6 6	2 💹
Applications	tors
LEED®-USA 2009 (2012) (💌 🔼 🖶 🗎 🛛	+ - 12
When to use	
Model geometry	
🕀 Model data	
LEED® rating system	
① IES TaP	
Transport SS 4.1	
Parking SS 4.4	
Open space SS 5.2	
Storm water SS 6.1	
Heat island non-roof SS 7.1	
Heat island roof SS 7.2	
Water use WE preq / WE 2, WE 3	-
Water eff. landscaping WE 1 Factors 2 & EA 1 2	
Energy performance EA preq 2 & EA 1, 2, A completed PRM model & analysis is	0
 recommended. Ensure renewables are 	
entered.	
 Use the PRM 2007 Navigator to generate the PRM reports. 	2
Enter energy data	? 🗋 🔽
Open green power dialog	
Assess credits 1, 2, 6	
Submit report to IES TaP	
Controllability of systems IEQ 6.2	
Thermal comfort IEQ 7.1	
Daylight IEQ 8.1	
① Views IEQ 8.2	

18 Credits (46-58 Points)

Daylighting & Views; Thermal Comfort; Controllability of Systems; Water Use & Water Efficiency; Transport; Parking; Heat Island Roof; Storm Water; Open Space; Increased Ventilation; Optimize Energy Performance and Green Power.

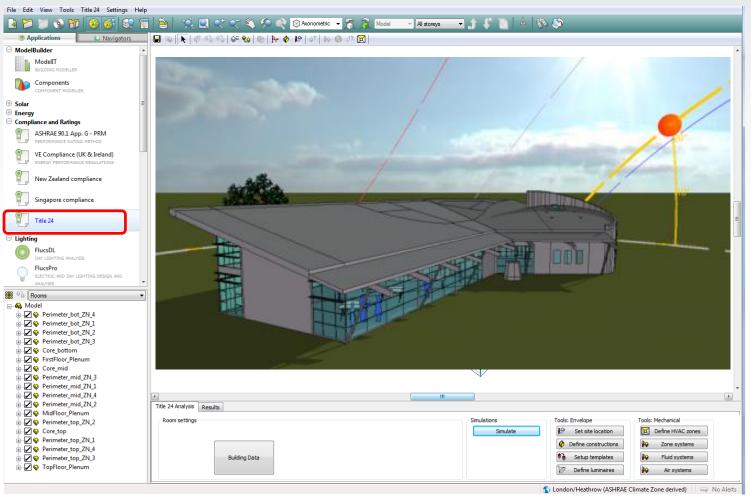

Spaces 81% pass

(1) IES VE Navigators – E.g. ASHRAE 90.1 Navigator IES VE with CBECC-Com and Whole-Building Energy Modeling


LEED Energy Modeling; Navigator Workflow

Applications	6) Na	iviga	tors		
ASHRAE 90.1 App. G - PRM	- 🖪	-	B	Đ		12
🕀 Preliminary Data Setup					🗋	
Envelope Thermo-physica	l Propertie	25			🗋	
① Room/Zone Thermal Tem	plate Data	L			🗋	
HVAC Systems					🗋	
Set up room grouping f						1
System Schedules and S	etpoints					v
Baseline System						
Proposed System						
 Improve Upon Basel Edit Current Propose 						V
 Or Custom System 						v
System Parameters						1
Other Input Data						
Generate Baseline						
Generate the baseline m	nodel			7		V
Sizing Runs					🗋	
Room Load Calculation						V
Access Loads Data Spre						1
 Assign Room Sizing Dat System Load Calculation 						V
 System Load Calculation Update Baseline fan sizi 	ns na data			:		
Sizing reports	ng data					
Simulations						
Cost						
⊖ Results						
Set parameters for 'unm						
temperature tests				1		1
③ BPRM Report						
Detailed Simulation Rep	orts					
ASHRAE 62.1						
Display Selected Report	s			7		1

ASHRAE 90.1 Navigator Output Reports:


(2) IES VE Applications – One Central Model IES VE with CBECC-Com and Whole-Building Energy Modeling

IES

(2) IES VE Applications: E.g. California Title 24 IES VE with CBECC-Com and Whole-Building Energy Modeling

IESVE Title 24 Application:

A Presentation by: Integrated Environmental Solutions

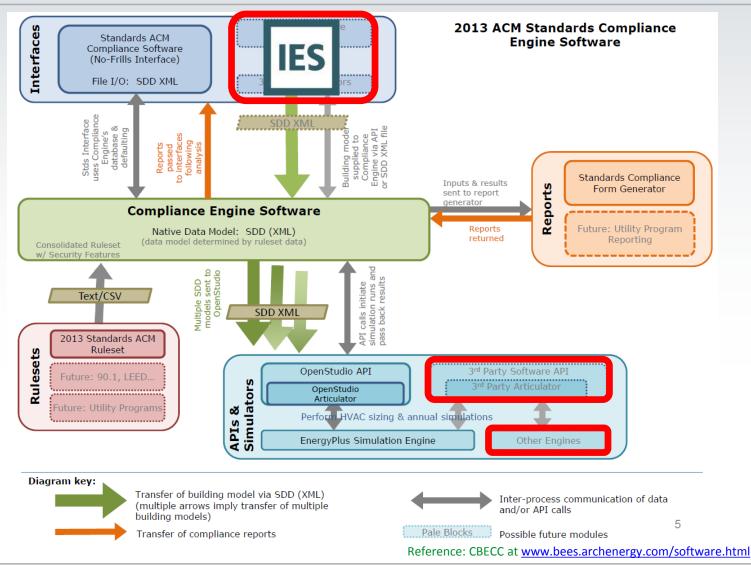
(2) IES VE Applications: E.g. California Title 24, Outputs IES VE with CBECC-Com and Whole-Building Energy Modeling

DV/ft2-yr)										Outputs
	Space heating	Space cooling	Fans	Heat rejection	Pumps	DHW	Lighting	Total		Summary
Proposed	48.8	254.9	44.6	0	4.1	15.9	25.3	393.6		Summary
Standard	48	215.1	214.7	0	0	6.8	61.9	546.5		Unmet load hours
Margin	-0.8	-39.8	170.1	0	-4.1	-9.1	36.6	152.9	PASS	Certificate

Project Name: SMUD T24 Training

CERTIFICATE OF COMPLIANCE - NONRESIDENTIAL PERFORMANCE COMPLIANCE METHOD

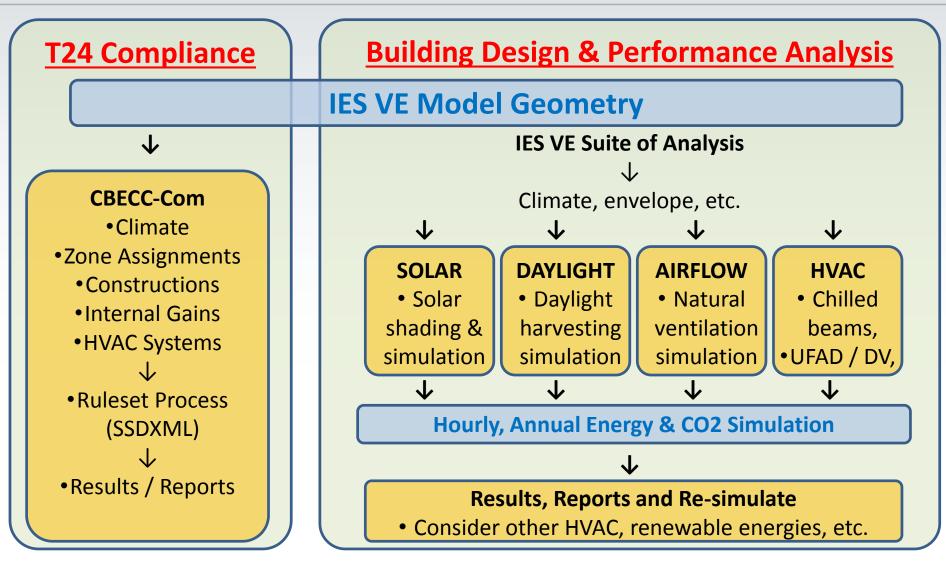
End Use	Standard Design Site (MWh)	Standard Design Site (therms)	Standard Design (kTDV/ft2)	Proposed Design Site (MWh)	Proposed Design Site (therms)	Proposed Design (kTDV/ft2)	Compliance Margin (kTDV/ft2)
Space Heating		548.00	48.00	0.00	590.00	48.80	-0.80
Space Cooling	10.90		215.10	18.60		254.90	-39.80
Indoor Fans	19.50		214.70	3.70		44.60	170.10
Heat Rejection							
Pumps & Misc.				0.40		4.10	-4.10
Domestic HW		88.00	6.80		205.00	15.90	-9.10
Lighting	5.80		61.90	2.50		25.30	36.60
Compliance Total	36.20	636.00	546.50	25.20	795.00	393.60	152.90
Receptade	7.60		87.00	7.60		87.00	
Process							
Process Ltg							
TOTAL	43.80	636.00	633.50	32.80	795.00	480.60	


MPLIANCE RESULTS				
01		BUILDING	COMPLIES	
02		Special Features a	are Required -TBD	
03		HERS Verification	is Required - TBD	
	ANNUAL	TDV ENERGY USE SUMMARY (kBt	u/ft2/yr)	
	04	05	06	07
Energy Component	Standard Design	Proposed Design	Compliance Margin	Percent Better than Standard*
Space Heating	48.0	48.8	-0.8	-1.7%
Space Cooling	215.1	254.9	-39.8	-18.5%
Indoor Fans	214.7	44.6	170.1	79.2%
Heat Rejection	-	-		-
Pumps & Misc.	-	4.1	-4.1	NaN
Domestic Hot Water	6.8	15.9	-9.1	-133.8%
Lighting	61.9	25.3	36.6	59.1%
COMPLIANCE TOTAL	546.5	393.6	152.9	28.0%
Receptacle	87.0	87.0		0.0%
Process	-	-		-
Process Lighting	-	-		=
TOTAL	633.5	480.6		24.1%

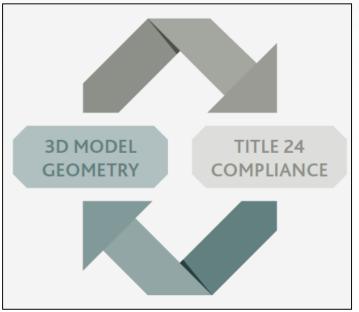
Calculation Date/Time:

NRCC-PRF-01-E Page 2 of 7

How IESVE integrates with CBECC-Com

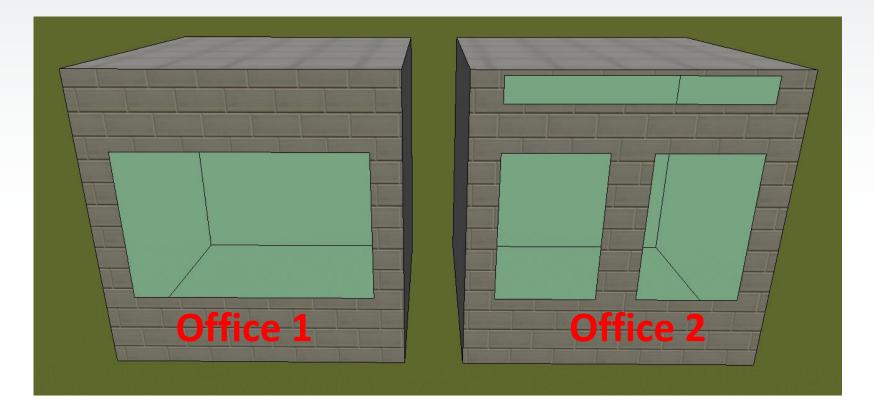

IES VE with CBECC-Com and Whole-Building Energy Modeling

IES-VE Landscape with Title 24 and CBECC-Com

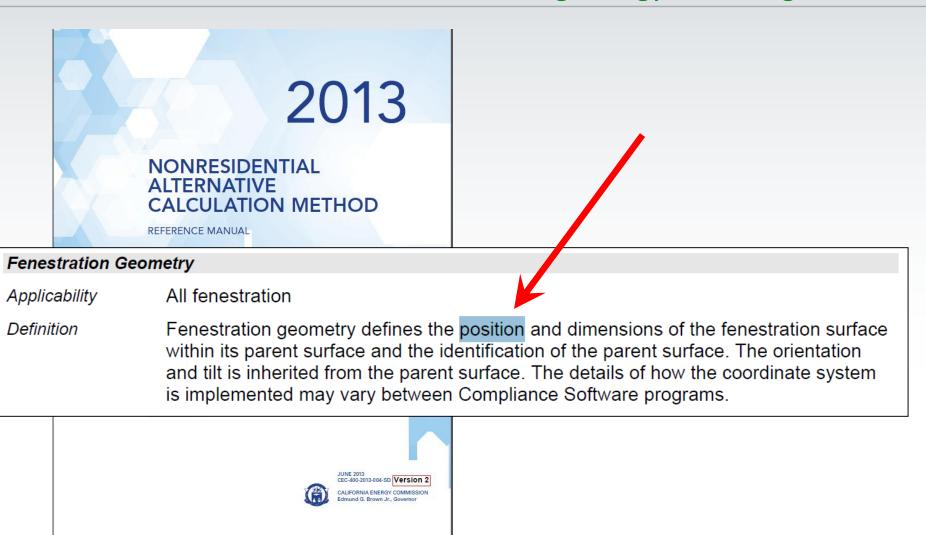

IES VE with CBECC-Com and Whole-Building Energy Modeling

Why use IES-VE for Title 24 Compliance? IES VE with CBECC-Com and Whole-Building Energy Modeling

- 1. Free 3D Model Application
- 2. T24 Application is \$250
- 3. Two Applications are Fully Interoperable, i.e. no data loss with geometry revisions.
- Spreadsheet
 Interoperability (Crtl+V)
 Technical Support
 - Provided


IES VE with CBECC-Com and Whole-Building Energy Modeling

How to Model...


Model Geometry IES VE with CBECC-Com and Whole-Building Energy Modeling

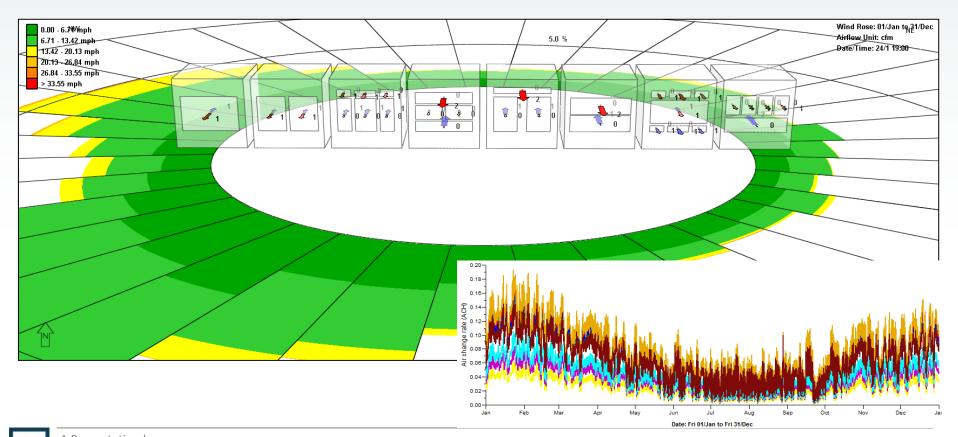
Q: Which office space has the higher heating load? Both: San Diego – Office Gains – VE1-2M – 40% Glazing



Model Geometry IES VE with CBECC-Com and Whole-Building Energy Modeling

Model Geometry IES VE with CBECC-Com and Whole-Building Energy Modeling

- Q: What about now... (highest heating load)?
- ALL 8: San Diego Office Gains VE1-2M 40% Glazing



Model Geometry & Infiltration

IES VE with CBECC-Com and Whole-Building Energy Modeling


Q: What about now... (highest heating load)?

• ALL 8: San Diego – Office Gains – VE1-2M – 40% Glazing

Model Geometry & Solar Gains

IES VE with CBECC-Com and Whole-Building Energy Modeling

A Presentation by: Integrated Environmental Solutions

Caution!! CBECC-Com uses OpenStudio

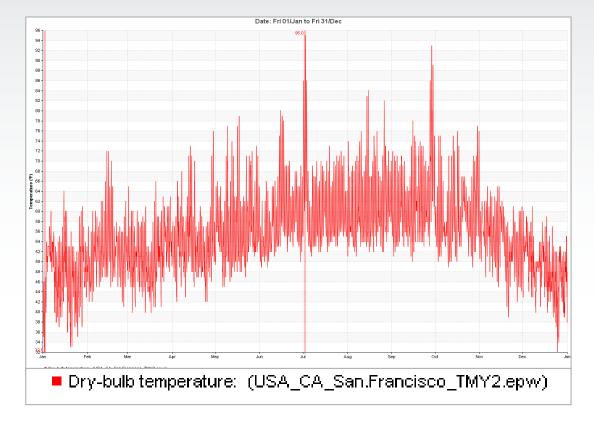

IES VE with CBECC-Com and Whole-Building Energy Modeling

You Tube =-	٩
	🖌 Retrartit Tataviak Geometry_satated 100 skg - Sketch Ap Pro
	The Life time Connex Date Table Ta
	③ 安 寧 雪 回
	84
	**
	2×
	03
	19 3
	Image: Second section to part Measurements ● (1) 0.15/3:14 ● (2) □ []
	Finding non-Convex Surfaces with the OpenStudio SketchUp Next in Energy Modeling for Retrofit Projects Plug-in Running a Baseline Simulation from the Retrofit Modeling Guide

Climatic Analysis & Weather Files

IES VE with CBECC-Com and Whole-Building Energy Modeling

Title 24 Site Location:

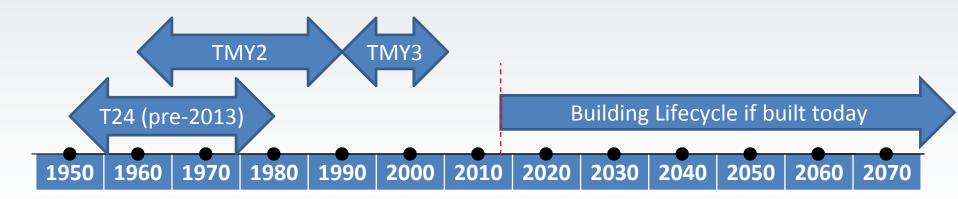

- New 2013 weather data set consists of 86 location specific weather files and 16 generic climate zone files.
- The 86 location specific weather files are intended for use in all code compliance simulations.
- The 16 climate zone weather files are the files for a single selected "reference location" for each climate zone.
- TDV factors are defined for each fuel type (electricity, natural gas, and propane) per climate zone.

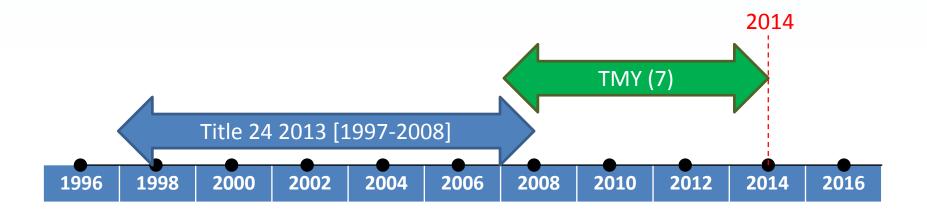
Climatic Analysis & Weather Files

IES VE with CBECC-Com and Whole-Building Energy Modeling

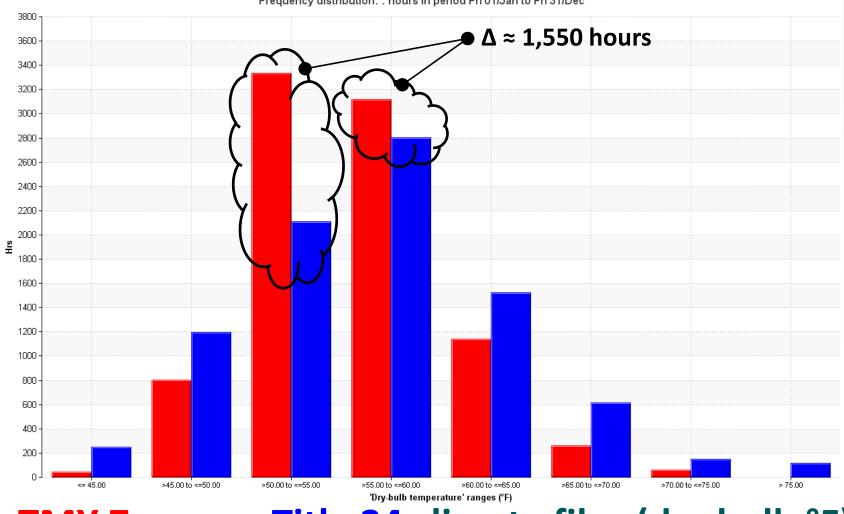
Weather Data (8,760)

- Dry-bulb temperature
- Wet-bulb temperature
- External Dew-Point Temperature
- Wind Speed
- Wind Direction
- Direct Radiation
- Diffuse Radiation
- Global Radiation
- Solar Altitude
- Cloud Cover
- Atmospheric Pressure
- External Relative Humidity
- External Moisture Content





Climatic Analysis & Weather Files


IES VE with CBECC-Com and Whole-Building Energy Modeling

Q: What Weather Data do you use? TMY 2, TMY 3, AMY

Climatic Analysis for San Francisco IES VE with CBECC-Com and Whole-Building Energy Modeling

Frequency distribution: : hours in period Fri 01/Jan to Fri 31/Dec

TMY 7 versus **Title 24** climate files (dry bulb °F)

IES

IES-VE Title 24 Envelope

IES VE with CBECC-Com and Whole-Building Energy Modeling

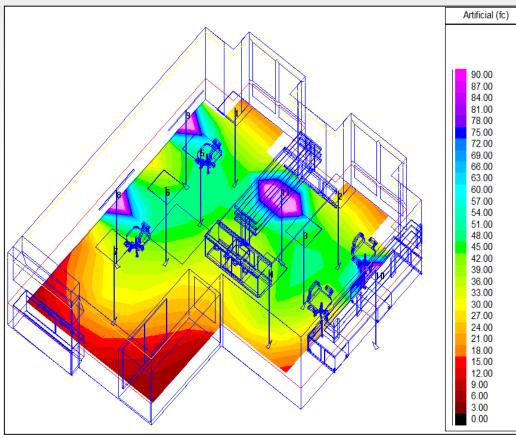
Title 24 Analysis Results									
Room settings		Simulations			Envelop	2	Tool	ls: Mechanical	
		Simulate	e	₽	Set sit	e location		Define HVA	C zones
				Ø	Define co	onstructions	s 🛛 🙀	Zone sys	tems
Building Data				۰.	Setup	templates	<u>i</u>	Fluid sys	tems
				V	Define	luminaires	₽	Air syst	ems
							\downarrow		
	Construction layers								
	Material (outside to inside)	Th in	nickness	Conductivity Btu·in/h·ft²·°F	Density Ib/ft³	Specific Heat Capacity Btu/Ib·°F	Resistance ft ² ·h·°F/Btu	Vapour Resistivity (perm·in)^-1	Category
	[T24_0356] Metal Standing Seam - 1/16 in.	0.0		4.001	488.220	0.1200	-	-	Asphalts &
	[T24_0194] Expanded Polystyrene - EPS - 3 1/2 in.	3.5	50"	0.240	1.000	0.2700	-	-	Boards, Sheets
Title 24 Composite Frame material Frame configuration	Frame depth 0_5In Cavity insulation R-value 0_5In degF-fi	2-h/Btu							
Frame configuration Wall 16in OC Wall 16in OC Wall 24in OC Wall 24in OC WallAWS 24in OC WallAWS 48in OC Floor 16in OC Floor 16in OC Roof 16in OC Roof 24in OC Roof 48in OC HETT BOUF 124 HOOL	0_75In 1In 1_5In 2In 2_5In 3In 3_5In	Car							

IES VE with CBECC-Com and Whole-Building Energy Modeling

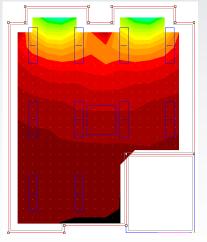
Description: Viracon VE 1-2M (U=0.26) [SHGC=0.38] (VLT=70%) ID: GDPK61 External Internal Performance Net U-value (including frame) 0.2510 Btu/h·ft2*F ASHRAE ASHRAE Net R-value 3.8466 ft2*h*%/Btu g-value (EN 410) 0.3850 Visible light normal transmittance 0.7 + Surfaces - Frame Frame -	
Percentage 1.00 Absorptance 0.7 Outside surface area ratio 1.0000 Type Metal U-value 0.3647 Btu/h·ft2·9F Resistance 1.892 ft2·h·9F/Btu Inside surface area ratio 1.0000 Type Metal • LCA frame materials Edit 1.892 ft2·h·9F/Btu Inside surface area ratio 1.0000 • • Shading device Inside surface area ratio 1.0000 •	Short wave radiation passes through glass
Material Indicators Type Gas coefficient ft*h**/F/Btu Transm. Outside Index Function Emission Index Function Emission Emi	Re-radiated long wave radiation is trapped inside
Product Type Fixed window Cert Method NFRC Rated Tint Clear Image: Diffusing? Assm Context Manufactured Divider True Divided Lite Image: Greenhouse/Garden? Image: Glass block?	THETA = Angle of incidence T(D) = Short wave solar transmission (directly transmitted fraction) T(R) = Long wave + convection from inner pane (retransmitted fraction)
	THETA 0° 10° 20° 30° 40° 50° 60° 70° 80° 90° T(D) 0.269 0.268 0.263 0.255 0.243 0.225 0.198 0.150 0.069 0.000 T(R) 0.110 0.111 0.112 0.113 0.115 0.117 0.116 0.110 0.086 0.000
	Short-wave shading coefficient 0.3097 Long-wave shading coefficient 0.1270 Total shading coefficient 0.4367 SHGC (center-pane) 0.3800

IES-VE Title 24 Daylighting

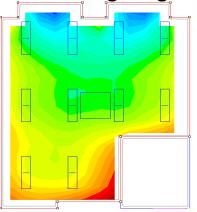
IES VE with CBECC-Com and Whole-Building Energy Modeling


Daylighting – automatic calculation:

General Interior lighting Dayl	ight control	Infiltration					
Skylit area				Standard			
Daylit area	0.00]		Minimum daylit area <mark>(</mark> Stand	lard 140.3 (c))	0.00	ft2
Illuminance RefPt coord	χ 0.00	Y 0.00	Z 0.00	Skylit req. exc	eption fraction	0.00	
Controlled power	0.00	w			Excluded area	0.00	ft2
Illuminance SetPoint	0.00	lux			Exception	- none -	▼
V Primary sidelit area		_		Control Parameters			
Daylit area	775.85			Control Type	Continuous		•
Illuminance RefPt coord	Х 7.64	γ 54.58	Z 2.50	MinDimLtgFrac	0.30		
Controlled power	580.69	w		MinDimPwrFrac	0.20		
Illuminance SetPoint	287.50	lux		Number control steps	0		
Secondary sidelit area	636.95]		Glare azimuth	0.00		
Daylit area Illuminance RefPt coord	x 0.00	Y 0.00	z 0.00	Max glare index	0.00		
Controlled power	0.00	w					
Illuminance SetPoint	0.00	lux					


IES-VE Daylight & Energy Simulation IES VE with CBECC-Com and Whole-Building Energy Modeling

(Day)lighting Simulation & Design

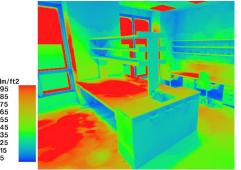

Luminaire simulations on a room by room basis

Daylighting Only

Combined Daylighting + Artificial Lighting

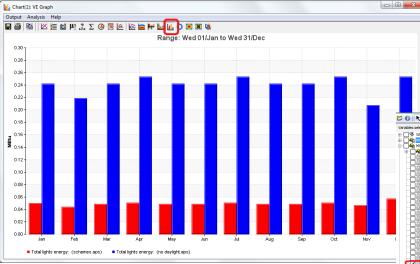
IES-VE Daylight & Energy Simulation IES VE with CBECC-Com and Whole-Building Energy Modeling

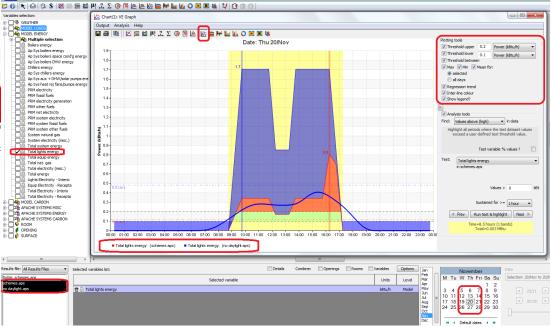
Daylight Harvesting, Glare & Daylight Autonomy


95 85

15 5

- **Task Lighting**
- **Detailed Daylight Tracking**
- Link to HVAC Loads Sizing and **Energy Simulation**



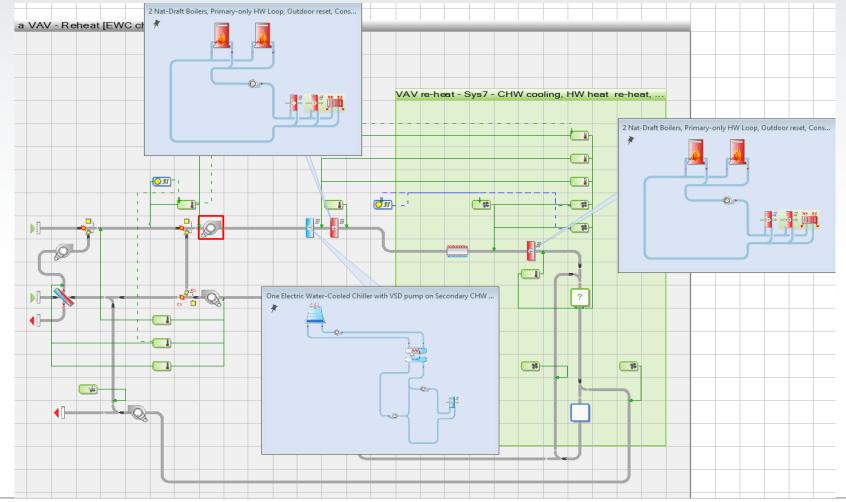


IES-VE Coupling Daylight & Energy Simulation IES VE with CBECC-Com and Whole-Building Energy Modeling

Annual Monthly Lighting Energy with & without daylight harvesting

Daily Lighting Energy with & without daylight harvesting

IES-VE Title 24 HVAC IES VE with CBECC-Com and Whole-Building Energy Modeling

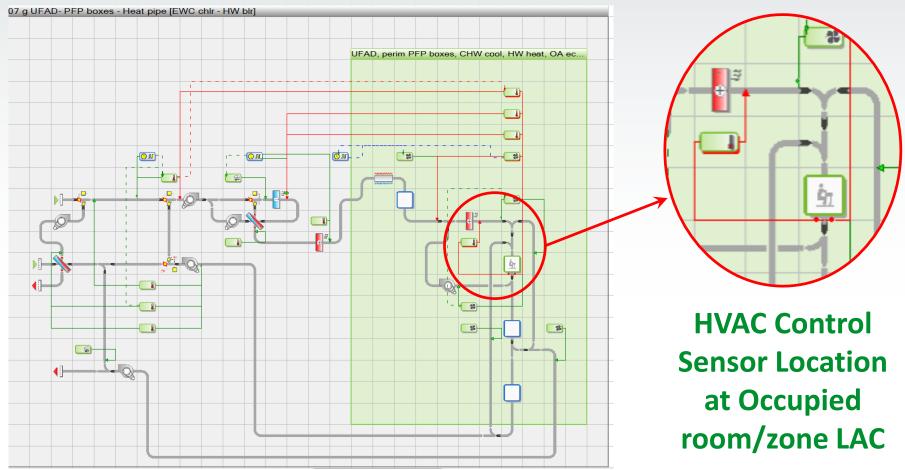

Zoning & HVAC:

settings	Simulations	Tools: Envelope
	Simulate	😭 Set site location 🔟 Define HVAC zo
		Ø Define constructions Ø Zone system
Building Data		Setup templates 🚱 Fluid system
		🕅 Define luminaires 🖗 Air systems
\checkmark		HVAC Systems
HVAC Zones	Air Systems Zone Systems Fluid Systems	,
Create and assign HVAC zones	PontOBae, Arsys PSZ-4C:3 FromRed Arsys PSZ-4C:4 Correctal Arsys PSZ-4C:5	al Ar segments Terminal Units Outside Air Type SZAC v SubType SinglePadage v heat Ctrl DualMaximum v Design Supply Air Temp 55.00 F Net Capacity 515822.00 Buh 95.00 F Net Capacity 515822.00 Buh 95.00 F Supply temperature control NetSATControl v Fixed Supply Temperature 0.00 F Setpoint Temp Schedule roome - v Reset Supply Juw 0.00 F Reset Supply Juw 0.00 F Reset Supply Juw 0.00 F Reset Supply Juw 0.00 F
OK Cancel	Re-assign	

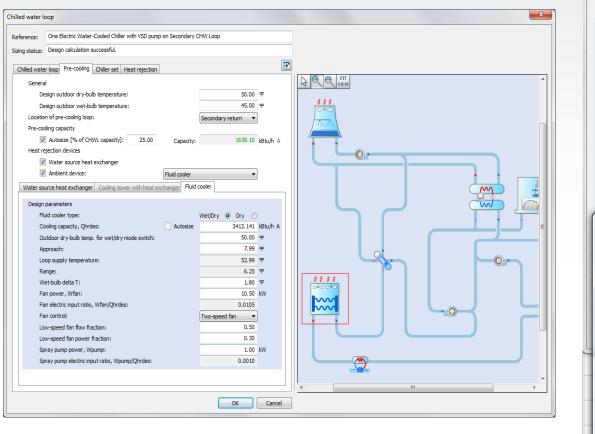
Integrated Environmental Solutions

IES-VE HVAC Systems Sizing and Simulation IES VE with CBECC-Com and Whole-Building Energy Modeling

ASHRAE Baseline/Reference HVAC Systems



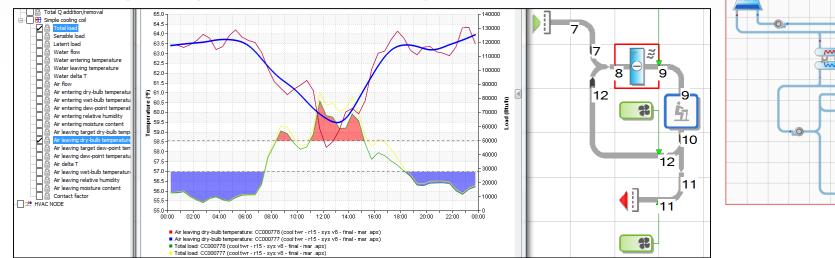
A Presentation by: Integrated Environmental Solutions


IES-VE HVAC Systems Simulation IES VE with CBECC-Com and Whole-Building Energy Modeling

Underfloor Air Distribution (Displacement Vent.)

IES-VE HVAC Systems Sizing and Simulation IES VE with CBECC-Com and Whole-Building Energy Modeling

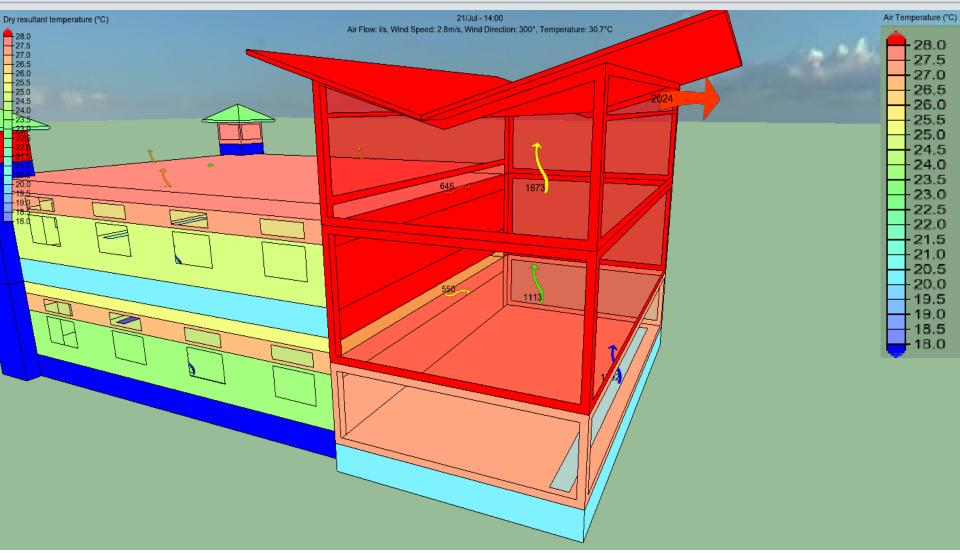
HVAC Optimization, performance curves


-								
eference:	S2: SA Far	n						
Settings								
Fan fuel	type:		ĺ	Electricity - Fan	s interior	-]	
Design fl	ow rate:		,			10000.00	cfm	A
Oversizir	ng factor:					1.00	1	
Design p	ressure rise	2:				2.00	in wa	ter
Fan effic	iency at de	sign flow r	ate:			82.22	%	
Motor ef	ficiency at (design flov	v rate:			90.00	%	
Motor air	stream hea	at pickup f	actor:			100.00	%	
Design fa	an power:					3.177	kW	
Characteri	stic							
Airflow n	ble volume nodulation p eristics	performan	ce curve	:: ASHRAE 90). 1 App G Ba	seline VV Far	_] ×
	nodulation p eristics A	SHRAE	90.1 A	App G Baseli	ine VV Far	-	_) ×
Airflow n	nodulation p eristics A	- 10	90.1 A power	App G Baseli - Motor	ine VV Far	-	_)
Airflow n	eristics A	SHRAE	90.1 A power	App G Baseli Motor w fraction	ine VV Far	100%)
Airflow n	eristics A	SHRAE 🔶 Fan p	90.1 / power Flo	App G Baseli Motor w fraction	ine VV Far efficiency	1) ×
Airflow n	odulation p eristics A	SHRAE 🔶 Fan p	90.1 / power Flo	App G Baseli Motor w fraction	ine VV Far efficiency	100%)%)
Airflow n Fan Charact	0%	SHRAE 🔶 Fan p	90.1 / power Flo	App G Baseli Motor w fraction	ine VV Far efficiency	100%)%]
Airflow n Fan Charact	0%	SHRAE 🔶 Fan p	90.1 / power Flo	App G Baseli Motor w fraction	ine VV Far efficiency	100%)%)
Airflow n Fan Charact	ow	SHRAE 🔶 Fan p	90.1 / power Flo	App G Baseli Motor w fraction	ine VV Far efficiency	100% 100 95% 90%	w w w w w w w w w w w w w w w w w w w) ×
Airflow n Fan Charact	0%	SHRAE 🔶 Fan p	90.1 / power Flo	App G Baseli Motor w fraction	ine VV Far efficiency	100% 100 959 909 - 859 - 809	9 9 9 90 Motor efficiency)
Airflow n Fan Charact	0%	SHRAE 🔶 Fan p	90.1 / power Flo 40%	App G Baseli	ine VV Far efficiency	100% 100 955 905 - 855	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9]
Airflow n Fan Charact	0%	SHRAE	90.1 / power Flo 40%	App G Baseli Motor w fraction 60%	ine VV Far efficiency 80%		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9) ×
Airflow n Fan Charact	0%	SHRAE	90.1 / power Flo 40%	App G Baseli	ine VV Far efficiency 80%		9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	

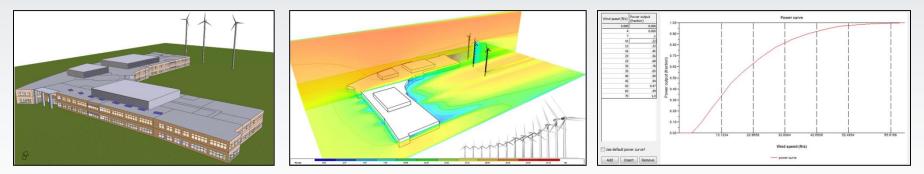
IES-VE HVAC Systems Sizing and Simulation IES VE with CBECC-Com and Whole-Building Energy Modeling

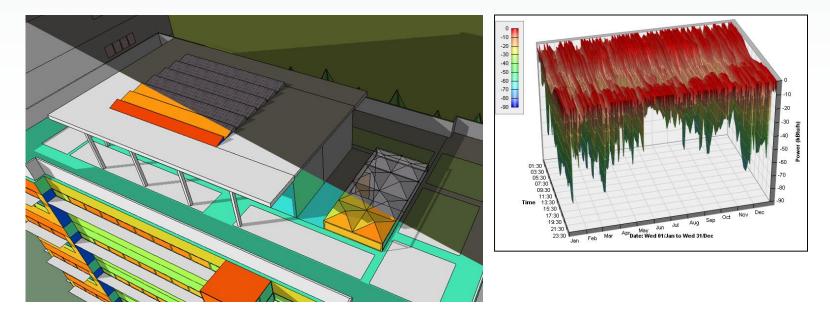
HVAC Optimization: tracking plant performance

- Extensive pre-defined library
- System & Zone Level Sizing
- 62.1 Ventilation
- HVAC Sizing Reports
- Node-sizing airside network
- Expanded Waterside Capabilities
- Ability to cope with Innovative Systems


IES-VE (Natural Ventilation) IES VE with CBECC-Com and Whole-Building Energy Modeling

Passive Building Design – Airflow

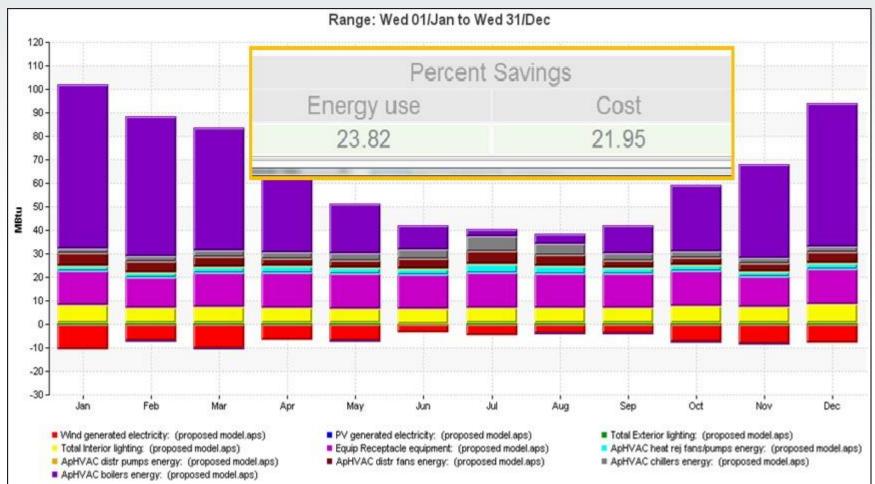



IES-VE (Thermal Comfort) IES VE with CBECC-Com and Whole-Building Energy Modeling

IES-VE Renewable Energy Simulation IES VE with CBECC-Com and Whole-Building Energy Modeling

Wind Turbines, Photovoltaic & Solar HW Panels

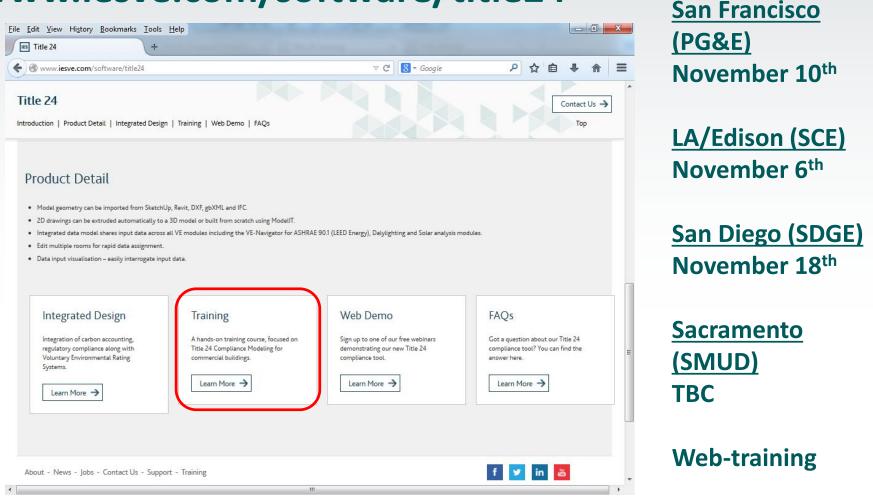
IES-VE Title 24 IES VE with CBECC-Com and Whole-Building Energy Modeling


Title 24 Reports:

- Simulation errors & warnings
- Unmet hours (by thermal zone)
- Energy consumption by end-use
- TDV energy comparison (Proposed v. Standard)
- Standard Design report (Certificate of Compliance)

CERTIF	ICATE OF COMPLIANCE - NONRESID	NRCC-PRF-01-E			
Project Name: 030006-OffMed-Baseline			Calculation Date/Time:		Page 1 of 7
Compli	ance Scope : New Complete Building	g including Envelope, Lighting and HVAC	nput File N	lame:	
A. GEN	ERAL INFORMATION				
01	Project Address	-specify-	21	Compliance Software	Virtual Environment 2014 version 6.4.0.12
02	City	-specify-	22	Compliance Manager Version	BEMCmpMgr 2013-2 (601)
03	Zip code	90505	23	Rule Set Filename	Constructed At Runtime
04	Climate Zone	ClimateZone6	24	Building Type	Nonresidential
05	Building Front Orientation	0	25	Construction Type	
06	Number of Above Grade Stories	3	26	North Wall Area (ft2)	6,386
07	Number of Below Grade Stories	0	27	East Wall Area (FT2)	4,257
08	Number of Dwelling Units	0	28	South Wall Area (ft2)	6,386
09	Total Conditioned Floor Area (ft2)	53,628	29	West Wall Area (ft2)	4,257
	1.51.				

IES-VE Custom Energy Outputs IES VE with CBECC-Com and Whole-Building Energy Modeling


Building Energy Results Visualizations

IES-VE Title 24 Compliance Training

IES VE with CBECC-Com and Whole-Building Energy Modeling

www.iesve.com/software/title24

IES-VE Title 24 Compliance Training

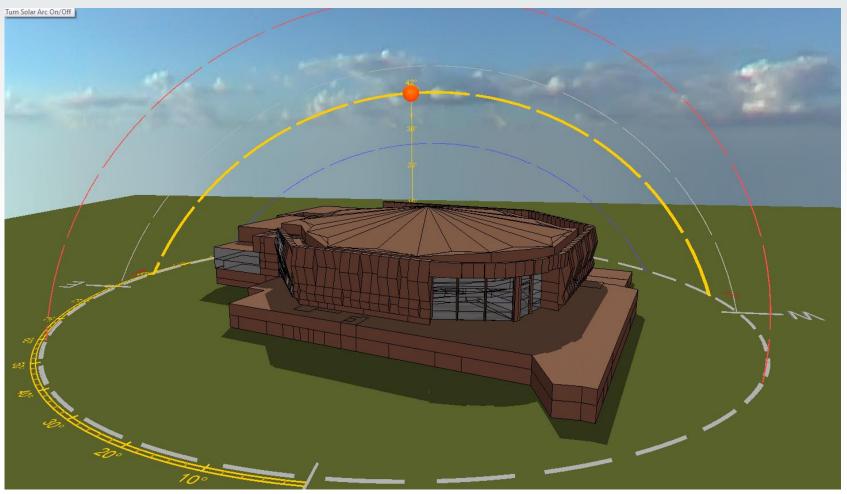
IES VE with CBECC-Com and Whole-Building Energy Modeling

Title 24 Training Agenda (9am-5pm)

- Introduction & distribution of training materials
- Overview of IES-VE software tools and Title 24 compliance workflow
- Model Management & Model Geometry:
 - Interoperability and Geometry Imports
 - 'build from scratch' workflow with tips & tricks
- Lunch (12:15-1:00pm)
- Building Data, Climate and Building Constructions Modeling
- Organization of Building Templates, room data, gains and profiles/schedules
- HVAC Zoning, air systems and fluids systems modeling
- Performing simulations, generating summary output reports and documentation

Example (AE) Training Agenda:

IES VE with CBECC-Com and Whole-Building Energy Modeling


Day 1 – Geometry & Daylight	Day 2 – Energy Simulation	Day 3 – Airflow & HVAC	
Introduction	Water Efficiency,	Intro to HVAC	
SketchUp/Revit to IESVE work-flow	Solar Shading Simulation	HVAC Loads	
Model Massing in IES-VE	Energy Simulation (simple)	HVAC Systems Sizing	
Climate Analytics	Internal Gains	Whole Building Energy Simulation	
	Profiles/Schedules	PRM Outputs & Reports	
	Envelope & Materials Studies	ASHRAE 62.1 & 90.1	
Daylight Analysis	Energy Simulation		
Lighting Design	Occupancy Thermal Comfort		
Daylight for LEED	Renewable Energy Analysis	Title 24 Compliance	
Glare Analysis	Natural Ventilation (bulk airflow)		
3-D Daylight Simulation	CFD Simulation (microscopic		
	airflow)		
	Discussion (15 minutes)	•	

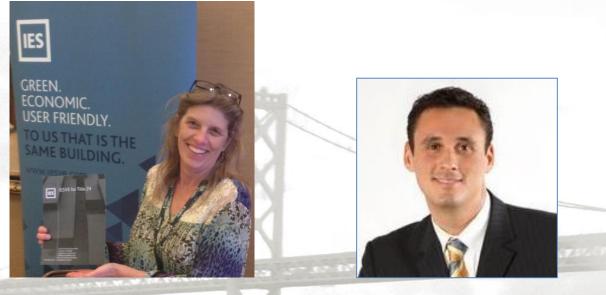
Case Study: Kings Basketball Arena

IES VE with CBECC-Com and Whole-Building Energy Modeling


Case Study: SMUD & AECOM

Case Study: South Wittier Library, Los Angeles IES VE with CBECC-Com and Whole-Building Energy Modeling

LEED Platinum Case Study: Green Dinosaur



IES INTEGRATED ENVIRONMENTAL SOLUTIONS

Questions / Comments

Liam.Buckley@iesve.com

Martha

Todd.Lukesh@iesve.com

www.iesve.com